
GSFC· 2015

Bayesian-based 

Simulation Model 

Validation for Spacecraft 

Thermal Systems

Dr. Kevin Stout

Conor McMenamin

Dr. Rebecca Masterson

Prof. Karen Willcox

Prof. Youssef Marzouk

MIT

MIT

MIT

MIT

MIT



Presentation Overview

• Introduction

– Background and Motivation

– Literature Review

– Research Goal

• Bayesian-based Model Validation (BMV) Methodology

– Methodology Overview

– REXIS Solar X-ray Monitor (SXM) Case Study

• Conclusion

– Primary Contributions

– Recommendations for Future Work

– Acknowledgements

2



Presentation Overview

• Introduction

– Background and Motivation

– Literature Review

– Research Goal

• Bayesian-based Model Validation (BMV) Methodology

– Methodology Overview

– REXIS Solar X-ray Monitor (SXM) Case Study

• Conclusion

– Primary Contributions

– Recommendations for Future Work

– Acknowledgements

3



Motivation

• Literature review of flight temperatures vs. model predictions

• Thermal systems are successful but:

– Overdesign w.r.t. stacked 

worst case scenarios

– Occasional model inaccuracies

How effective are current model validation practices?

Improve thermal model validation process to reduce 

form-related and process-related costs long term
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Bayesian-based Model Validation (BMV) Motivation

Potential to increase knowledge of the system earlier in the 

project lifecycle when important design decisions are made
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Literature Review Summary and Research Goal

Research Goal

Improve the thermal model validation process by developing a tailored methodology 

that combines the state of the art validation methods of Uncertainty Quantification 

(UQ) and Design of Experiments (DOE).

Summary of Literature Review

Area State of the Art Thermal Convention

Uncertainty 

Propagation (UP)

Probabilistic uncertainty 

characterization; UA/GSA [13,14]

Convex uncertainty characterization; 

margin “downstream” of model [15-17]

Design of 

Experiments (DOE)

Optimal (Bayesian) Experimental 

Design [20,21]
Classical DOE [15-19]

Model Calibration
Bayesian [24-27] 

(K-O approach [22,23])
Manual model correlation [1]

Research Gap

In practice, the state of the art methods are used rarely and in limited capacity

– No existing framework to combine state of the art methods for thermal systems
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Methodology rigorously quantifies and manages model 

uncertainties throughout model validation process!

Uncertainty and Global 

Sensitivity Analysis

Sensit ivity analysis at t ributes the QoI uncertainty to the uncertainty of individuals or

groups of parameters. Model parameter importance analyses generally focus on two types:

local sensit ivit ies and global sensit ivit ies. Local sensit ivity analyses examine the change in

the response of the QoI due to a small variat ion in a single model parameter [66]. How-

ever, local sensit ivit ies provide no global informat ion regarding the e↵ects of the parameter

uncertaint ies. Global sensit ivity analysis (GSA) addresses many of the limitat ions of local

sensit ivity analysis [67]. Figure 1-9 illustrates the general GSA process. GSA apport ions the

observed output variance, given by V[y], to the model parameter contributors, xi .

Figure 1-9: General global sensit ivity analysis process. Figure modified from [67, Fig. 1].

In the context of model-based design, GSA can guide research aimed at reducing model

parameter uncertaint ies that significant ly a↵ect expected performanceand allow engineers to

neglect model parameters that do not significant ly a↵ect a QoI. GSA can be broadly catego-

rized into two groups: regression-based methods and variance-based methods (i.e., Analysis

of Variance (ANOVA) methods) [45, 68]. Variance-based methods are most popular and are

based on a decomposit ion of the model into main e↵ects and interact ions [69, 70]. The goal

of most variance-based GSA is to approximate the main e↵ect and total e↵ect sensit ivit ies

for a given model parameter; these sensit ivity indices are well established expressions for use

50
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BMV Methodology Overview

Figure2-1: BMV methodology overview. Blueshading indicates analyses, orangeshading indicates decision(s), and red shading

indicates that physical hardware is involved. A model block is shown at the center of the diagram because steps two, four, and

five are model-based processes within BMV.

7
0

- Uncertainty analysis

- Global sensitivity analysis

- Prioritized parameter list

(BMV)

Blue = analyses

Orange = decision

Red = hardware required

- Thermal model adjusted for 

experimental conditions

- Experimental data

- Updated flight models

- Quantified model 

inadequacy

- Small design changes

Experimental 

Goal

UP and Parameter 

Prioritization

Validation

Problem 

Definition

Validation

Problem

Documentation

Design

Design and

Implementation of

Experiments

Bayesian-based Model Validation (BMV)

Small Redesign

Models

Experimental

Goal Setting

Validated

Models

Redesign

Experimental Model

Calibration and Flight

Model Updates

10



REXIS Solar X-ray Monitor (SXM) 

Case Study



REgolith X-ray Imaging Spectrometer (REXIS)

• One of five payload instruments on 

OSIRIS-REx

• Complements and enhances other 

science instruments on OSIRIS-REx
– Characterizes Bennu among known meteorite groups 

and map surface elemental distribution

the CCDs and doesn’t include the SXM as the REXIS spectrometer.

Figure 4-3: Top view of REXIS spectrometer on OSIRIS-REx instrument deck (circled in

red). The solar arrays are shown in a stowed configurat ion.

Figure 4-4: Side view of spectrometer (behind sunshade) and top view of SXM. This is the

nominal view of OSIRIS-REx from the sun during the mission.
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Spectrometer

Two assemblies: spectrometer and Solar X-ray monitor (SXM). SXM observes time-

variant solar X-ray spectrum to provide context to spectrometer measurements.

Spectrometer

SXM

Sun

X-ray fluorescence

(XRF)

Bennu

REXIS

Solar X-rays

SXM
SXM 

shown to 

scale
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(a) SXM nodes 1,2, and 5
(b) SXM nodes 3 and 4 (collimator and SXM

housing removed)

Figure C-6: SXM node assignments for the lumped parameter model

Figure C-7: Connect ivity matrix for SXM model. Blue boxes with C indicate conduct ive

heat transfer, and red boxes with R indicate heat transfer through radiat ion. Blank boxes

indicate no thermal connect ion (e.g., Gi ,j = 0). Above the matrix diagonal, heat transfers

from the upper left to the lower right nodes. Below the matrix diagonal, heat t ransfers

from the lower right to upper left nodes. An X is drawn over radiat ion from the sun to the

structural components beneath MLI blankets to explicit ly show the assumpt ion to neglect

solar radiat ion to these components.

In Figure C-7, a decision was made to not include the e↵ects of solar radiat ion on the

other SXM components (an X is drawn over radiat ion from the sun to the bracket and SXM

276

Thermal Model Structure

Model Structure

Lumped parameter model 

provides y(x,t), temperatures 

versus time for each node

• Five node lumped 

parameter model

• 38 total parameters

• 18 uncertain parameters

(a) SXM nodes 1,2, and 5
(b) SXM nodes 3 and 4 (collimator and SXM

housing removed)

Figure 5-6: SXM node assignments for the lumped parameter model

Figure 5-7: Connect ivity matrix for SXM model. Blue boxes with C indicate conduct ive

heat transfer, and red boxes with R indicate heat transfer through radiat ion. Blank boxes

indicate no thermal connect ion, e.g. Gi ,j = 0 in conduct ion. Above the matrix diagonal,

heat t ranfers from the upper left to the lower right nodes. Below the matrix diagonal, heat

transfers from the lower right to upper left nodes.

In Figure 5-7, a decision was made to not include the e↵ects of solar radiat ion on

the other SXM components. Although the MLI great ly reduces the total absorbed

heat, a sensit ivity analysis was performed to just ify the exclusion of solar radiat ion
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Node 5: Collimator

Node 1: Bracket
Node 3: SEB

Node 4: SDD Housing

Node 2: SXM 

Housing

2.5in
2.2in

What is max allowable TO-REx?

Cho-Therm Pad
TEC to cool SDD
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SXM Thermal Requirements

At least 99% probability that all 

temperature ranges are satisfied

Three quantities of interest (QoIs) for SXM – all operational 

component temperature ranges

SDD = silicon drift detector

SEB = SXM electronics board

14



Figure2-1: BMV methodology overview. Blueshading indicates analyses, orangeshading indicates decision(s), and red shading

indicates that physical hardware is involved. A model block is shown at the center of the diagram because steps two, four, and

five are model-based processes within BMV.
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Summary of SXM Case Study

• Three QoIs

• What is max allowable TO-REx?

Finally, an aluminum collimator fastened to the SXM housing restricts the field of view of

the SDD so that the majority of deep space and parts of OSIRIS-REx are removed from

view. The SDD housing, which contains the TEC and SDD, is discussed below.

Figure 4-7: SXM thermal system component overview

The SDD housing is the Amptek AXR SDD package [12] as shown in Figure 4-8. The

mount ing stud allows the package to be fastened to the SXM housing, and the pins are

at tached to the pre-amp board. The TEC base rests on the base of the SDD housing. The

TEC itself has two stages and cools the SDD. A transmissive Be window is brazed to the

+ X side of the SDD housing. Operat ionally, sunlight passes through the Be window and

impinges on the SDD. The primary heat path from the TEC is through the base of the SDD

housing to the SXM housing.

131
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Uncertainty Analysis

Monte Carlo (MC) Simulation
x contains all system and 

environmental parameters

• SDD temperature is driving QoI

• Max allowable TO-REx is 63 oC

Parametric uncertainty results in 

uncertainty in max allowable TO-REx
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Figure 5-5: Main e↵ects global parameter sensit ivit ies of SXM model for all three QoIs at

TO− RE x = 85 oC. The parameter variable names were defined in Table 5.3. The spacecraft

interface parameter, TO− RE x , is omit ted since it is held constant for this GSA.

5.3 St ep 3: Exper iment al Goal Set t ing—First Pass

In step two of BMV, UA indicated that the requirements will be met when account ing for

all parameter uncertaint ies. Thus, the answer to the first gate in Figure 2-4 is yes, and the

answer to the second gate (regarding whether the system-level model is validated) is no.

However, the upper limit on the spacecraft interface temperature, TO− RE x , was relaxed. The

case study will validate the model of the REXIS SXM and look back in the design lifecycle

to find the upper temperature limit of TO− RE x at which the interface could have been set

using BMV.

With TO− RE x variable, UA was repeated, and the SDD temperature was found to be the

driving QoI. From Figure 5-4, TO− RE x = 63 oC is the value at which the SDD requirement is

no longer sat isfied with at least 99% probability. From GSA, the uncertainty in the conduc-

147

ϕs  αc εc αhQSDD QSEB Gb Gs,b Gs,ba  kpins Gh  Gh,collcp,1 cp,2 cp,3 cp,4 cp,5

Global Sensitivity Analysis

Main Effects Sensitivities for TO-REx = 85 oC

Conductance between SDD housing and SXM housing, Gh, is driving 

uncertain parameter for SDD and SDD housing temperatures

Figure 4-9: SXM coatings and MLI

The TEC and the pre-amp board are the components that dissipate power during op-

erat ion of the SXM. The magnitudes of the dissipat ions are shown in Table 4.3. When o↵,

the SXM does not dissipate any heat . When on, the TEC power dissipat ion dominates the

total dissipat ion for the SXM. For the total SXM, the current best est imate (CBE) heat load

is 1.35W and the maximum expected value (MEV) is 2.75W. For conservat ism, MEV heat

loads are used in hot operat ional cases, and fract ions of the CBE heat loads, e.g. 90% of

CBE, are used in cold operat ional cases in convent ional thermal analysis.

Table 4.3: SXM power dissipat ions

The temperature of the spacecraft deck near the SXM is important because the SXM is

thermally coupled via thebracket. Thespacecraft is the thermal sink for theSXM. Thus, the

summary of bracket baseplate temperatures shown in Table 4.4 is relevant informat ion to the

design of the SXM. The spacecraft is responsible for maintaining the interface temperature
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Figure2-1: BMV methodology overview. Blueshading indicates analyses, orangeshading indicates decision(s), and red shading

indicates that physical hardware is involved. A model block is shown at the center of the diagram because steps two, four, and

five are model-based processes within BMV.

7
0

- Uncertainty analysis

- Global sensitivity analysis

- Prioritized parameter list

(BMV)

Blue = analyses

Orange = decision

Red = hardware required

- Thermal model adjusted for 

experimental conditions

- Experimental data

- Updated flight models

- Quantified model 

inadequacy

- Small design changes

Experimental 

Goal

UP and Parameter 

Prioritization

Validation

Problem 

Definition

Validation

Problem

Documentation

Design

Design and

Implementation of

Experiments

Bayesian-based Model Validation (BMV)

Small Redesign

Models

Experimental

Goal Setting

Validated

Models

Redesign

Experimental Model

Calibration and Flight

Model Updates

Summary of SXM Case Study

• SDD temperature = driving QoI

• SDD temperature below 99% at 

TO-REx = 63 oC

• GSA indicates Gh parameter as the 

primary global sensitivity
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2.3 St ep 3: Exper iment al Goal Set t ing

The framework for experimental goal sett ing is shown in the cloud in Figure 2-1. Based

on the results of UP and parameter priorit izat ion, Figure 2-4 shows the decision tree for

determining the experimental goal. There are four dist inct outputs of the experimental goal

set t ing step: (1) parameter inference experiment , (2) system-level validat ion experiment, (3)

small redesign, or (4) the system-level model(s) are validated.

Figure 2-4: Experimental goal set t ing procedure for BMV methodology

The first decision gate is whether UA indicates that all QoI dist ribut ions meet require-

ments. While nominal QoI values must meet requirements, it is also important that there

is sufficient confidence the requirement will be met given the QoI variability. For example,

a QoI variance that meets the requirement with 99% probability could be sufficient for a

certain system. If there is not adequate confidence that the requirement is met, the next

decision gate is whether to perform a small redesign to increase the probability of meet ing

requirements. A small redesign refers to a minor change in the thermal system design such

that the system does not architecturally change, and there are lit t le or no changes to the

thermal model structure (e.g., surface coat ing change result ing in opt ical property changes

in model or a small increase in radiator size). Whether to perform a small redesign is an

79
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Two types of experiments will be implemented:

• Parameter inference experiment to reduce uncertainty in Gh
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Figure2-1: BMV methodology overview. Blueshading indicates analyses, orangeshading indicates decision(s), and red shading

indicates that physical hardware is involved. A model block is shown at the center of the diagram because steps two, four, and

five are model-based processes within BMV.

7
0

- Uncertainty analysis

- Global sensitivity analysis

- Prioritized parameter list

(BMV)

Blue = analyses

Orange = decision

Red = hardware required

- Thermal model adjusted for 

experimental conditions

- Experimental data

- Updated flight models

- Quantified model 

inadequacy

- Small design changes

Experimental 

Goal

UP and Parameter 

Prioritization

Validation

Problem 

Definition

Validation

Problem

Documentation

Design

Design and

Implementation of

Experiments

Bayesian-based Model Validation (BMV)

Small Redesign

Models

Experimental

Goal Setting

Validated

Models

Redesign

Experimental Model

Calibration and Flight

Model Updates

Summary of SXM Case Study

Two types of experiments:

• Parameter inference for Gh

• System-level model validation
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Model Validation Experiment

the mission. All x’s are model validat ion experiment tests; the red x indicates that T36 also

corresponds to the parameter inference experiment to reduce uncertainty in Gh.

Figure 5-10: Grid of all SXM thermal test phases, including parameter inference experi-

ment (red x) and model validat ion experiment (all x’s, both blue and red). Model validat ion

experiment coarsely grids the domain of expected TEC voltages and SXM interface temper-

atures.

5.4.3 Exper iment al Result s

The parameter inference and model validat ion experiments were executed per the test plan

in appendix A. Appendix B shows the raw data from each test phase. The data from

the parameter inference and model validat ion experiments are used in step five of BMV to

calibrate the SXM experimental thermal model, quant ify the calibrated model’s inadequacy,

and update theflight model. In this sect ion, plots areshown to providea high-level summary

of SXM thermal performanceduring thetests. From Figure5-10, test phasesT1 through T43

were successfully executed to steady state condit ions (typical stabilizat ion was ± 0.1 oC/ hr

for at least 30 min). Test phases T44 and T45 were not accomplished because an electrical

short caused a failure in the SDD package. The electrical short will be invest igated and

corrected for the SXM flight hardware. The failure of the SDD package was not a problem

associated with the SXM thermal system, experimental temperatures, or the thermal system

176

• Full-factorial experiment 

(classical DOE)

• Small system time constant

• All test phases completed to 

steady state conditions

Parameter inference 

experiment for Gh

Validation experiment designed to span  

domain of expected TEC voltages and 

SXM interface temperatures 
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Name Variable
DOE 

Variable
Units

Nominal 

Value

Minimum 

Value

Maximu

m Value

Temperature of O-REx Deck TO-REx d1 °C 40 -100 75

TEC Voltage VTEC d2 VDC 3.0 0 4.5

Table of Experimental Design Conditions, d

x, θ, d1

x, θ, d2

x, θ, d3

ηSXM

U(d1)

U(d2)

U(d3)

Utility 

Function

z1

z2

z3

+ εm

Two experimental design conditions varied to create different 

parameter inference experiments for Gh

Parameter Inference Experiment

Nomenclature

x: all model parameters

θ: parameter(s) of interest, θ = Gh

d: experimental conditions, 

d = [TO-REx,VTEC]T

z: experimental result/data

Thermal 

Model
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d* is TO-REx = -30 oC, VTEC = 4.0 V, and Tw = 23 oC

U(d)

(nats)

Parameter Inference Experiment
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• 43 of 45 test phases completed to steady state

• Final recorded temperature is shown (very 

small observation error variance)

• Max expected TEC power is <2.0 W

• Preliminary thermal model has good predictive accuracy for SDD temperature

Sample Experimental Results

24



Figure2-1: BMV methodology overview. Blueshading indicates analyses, orangeshading indicates decision(s), and red shading

indicates that physical hardware is involved. A model block is shown at the center of the diagram because steps two, four, and

five are model-based processes within BMV.
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Model Calibration Process Overview

General process for calibration of model parameters and 

quantifying the model inadequacy
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Markov Chain Monte Carlo Results

Posterior parameter 

distributions yield 

acceptable fit to all data

Posterior Predictive Check for all 43 Test 

PhasesOn average, difference 

between model prediction 

and data is less than 1 oC

R23 = -0.64

R13 = -0.0009R12 = -0.54
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Figure2-1: BMV methodology overview. Blueshading indicates analyses, orangeshading indicates decision(s), and red shading

indicates that physical hardware is involved. A model block is shown at the center of the diagram because steps two, four, and

five are model-based processes within BMV.
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Blue = analyses

Orange = decision

Red = hardware 

required
• MCMC to calibrate parameters

• Persisting model discrepancy 

<1 oC, on average
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Uncertainty Analysis

Monte Carlo (MC) Simulation
x contains all system and 

environmental parameters

• SDD temperature is driving QoI

• Max allowable TO-REx is 63 oC

Parametric uncertainty results in 

uncertainty in max allowable TO-REx
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Updated Uncertainty Analysis

True physical process, ζSXM

Monte Carlo simulation of true physical process

• SDD temperature is still driving QoI

• Max allowable TO-REx is 60.8 oC

Low uncertainty in max allowable TO-REx
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• Max allowable TO-REx is 60.8 oC

• Low uncertainty in max allowable TO-REx
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BMV Motivation – SXM Case Study

Potential to increase knowledge of the system earlier in the 

project lifecycle when important design decisions are made

• Conservative, conventional 

approach set TO-REx to 50 oC 

• BMV: max temperature could 

have been up to 10 oC warmer

• Gh = critical system parameter

• Post-calibration: reduced uncertainty in Gh, Gs,b, Gb

• Quantified model discrepancy

All requirements 

met for 

TO-REx ≤ 60.8 oC
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Conclusion

• Application of state of the art model uncertainty methods for 

thermal systems

• Created BMV methodology using state of the art UQ and DOE

• Implemented BMV on REXIS hardware

– System level form and validation process improvements

• Future work:

– Demonstrate BMV on larger, more complex thermal systems

– Improve BMV interface with Thermal Desktop

– Create databases of parameter uncertainty distributions
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Posterior Sampling Formulation

Calibration Parameters

Metropolis-Hastings Algorithm [28,29], method 

for Markov Chain Monte Carlo (MCMC)

Bayesian inference: given the test data, MCMC is used to 

sample the posterior distributions of the calibration parameters

where

Bayes’ Theorem



Posterior Check Explanation

limits, include the e↵ects of addit ional parameter uncertainty, or change the model struc-

ture). Once the parameter calibrat ion produces an acceptable fit, the model discrepancy

is quant ified using the calibrated model predict ions and the experimental data. With the

calibrated SXM model and quant ified model discrepancy, the calibrat ion process is complete

and the flight model can be updated.

To illust rate the concept of a prior or posterior predict ive check, Figure 5-23 not ionally

shows a dist ribut ion for a single model output, y, plot ted with a single, steady state data

point . A prior posterior check isvaluable in determining whether theprior model uncertainty

is sufficient to explain the experimental data prior to updat ing the model. A posterior

predict ive check is useful for determining how well the updated model describes the data.

Figure 5-23a shows a predict ive check where the data is plausible under the model output

dist ribut ion; in Figure 5-23b, the data is implausible under the model output dist ribut ion.

In Figure 5-23b, if the distance between the distribut ion and data point is large, there is

evidence of significant model inadequacy. If the distance between the distribut ion and data

point is very small, the calibrat ion may st ill be acceptable.

(a) Plausible data (b) Implausible data

Figure 5-23: Not ional prior or posterior predict ive check for a single model output and a

single data point demonstrat ing plausible and implausible data under a single model output

distribut ion

5.5.3 Paramet er Calibrat ion: Gh Only

The SXM thermal model will be calibrated to match all of the experimental data from the

parameter inference and model validat ion experiments, per the model calibrat ion process

out lined in Figure 5-22. In step two of BMV, the conductance between the SDD housing to

189

• Calibration parameters: γ = [Gh Gs,b Gb]
T

• All other parameters in x are fixed
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Posterior Predictive Check for T36

Model discrepancy function improves model 

accuracy (all data plausible under model output)

Bracket SXM Housing SDD Housing

Collimator
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Model Discrepancy Formulation

• Kennedy-O’Hagan formulation [22], 

additive model discrepancy

• Gaussian Process (GP) models

• Squared Exponential ARD 

covariance kernel

discrepancy experimental 

observations
calibrate

d model

observation 

error

5x1 vector 

corresponding to 

measurements on 5 

SXM componentsZero-mean Gaussian Process, each 

discrepancy term is an independent function

Squared exponential 

Automatic Relevance 

Determination (ARD) 

covariance kernel

GP models used to quantify the calibrated 

model discrepancy for all 43 test phases

function of d only



Calibration Parameter Selection
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Gh Only Gh and Gs,b

Gh and Gs,b, Relaxed 

Lower Bound

Gh, Gb, and Gs,b, 

Relaxed Lower Bound

Prior Predictive Check Sequence

Calibration parameters: γ = [Gh Gs,b Gb]
T

All other parameters in x are fixed

SDD & SDD 

housing 

plausible

SDD & SDD 

housing 

plausible

SDD, SDD housing, SXM housing, 

& collimator plausible

Data for all 

components plausible
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GP Model Regression Results

Mean of Bracket Discrepancy 

Samples for all 43 Test Phases
No data

Bracket GP Model Mean 

Value on Fine Grid

By inspection, regressed GP model mean is a good 

approximation of the mean of the discrepancy samples 

GP regression used to find hyperparameter values (σ0, λ1, λ2) for each discrepancy function

Units in oC



Key Definition

Process of confirming a model is an adequate representation of the 

system and is capable of predicting the system’s behavior accurately 

with respect to requirements over the domain of the intended 

application of the model [3,4]

Simulation Model Validation



General Heat Transfer Equation

Background – Thermal Simulation Models

rcp

¶T

¶t
= Ñ×k(Ñ×T )+Q(T, t)

Symbol Variable

ρ Density

cp Specific heat

k Conductivity

Q(T,t) Source heat

Predictions for spacecraft component 

temperatures for a given operational mode 

and thermal environment.

Power dissipation 

of spacecraft 

components

System component 

geometry, connectivity, 

and material properties

Parameters 

Model

Output

General Spacecraft Thermal Environment

Increasing 

fidelity

Thermal Analysis Tools

• Analytical models

• Lumped parameter models

• Commercially available software 

packages

- TSS/SINDA and Thermal Desktop 

(Finite Difference)

Thermal 

Environment



SXM Thermal Design Overview

• Thermoelectric cooler (TEC) to cool 
SDD

• Conduction dominates

• Thermally coupled to OSIRIS-REx 
interface, TO-REx

• Nominally, TO-REx = 50 oC

Finally, an aluminum collimator fastened to the SXM housing restricts the field of view of

the SDD so that the majority of deep space and parts of OSIRIS-REx are removed from

view. The SDD housing, which contains the TEC and SDD, is discussed below.

Figure 4-7: SXM thermal system component overview

The SDD housing is the Amptek AXR SDD package [12] as shown in Figure 4-8. The

mount ing stud allows the package to be fastened to the SXM housing, and the pins are

at tached to the pre-amp board. The TEC base rests on the base of the SDD housing. The

TEC itself has two stages and cools the SDD. A transmissive Be window is brazed to the

+ X side of the SDD housing. Operat ionally, sunlight passes through the Be window and

impinges on the SDD. The primary heat path from the TEC is through the base of the SDD

housing to the SXM housing.

131

What is max allowable TO-REx?



Experimental Set-Up

Example model modifications

– Include sensor/observation error, εm

– Thermal vacuum wall temperature 

is external radiation sink

– No sunlight

– TEC not software-controlled

SSL Thermal Vacuum Chamber

Nomenclature

x: all model parameters

θ: parameter(s) of interest, θ = Gh

d: experimental conditions, 

d = [TO-REx,VTEC, Tw]T

z: experimental result/data

A .4.4 Facil i t y Requirement s

The SSL thermal vacuum chamber, shown in Figure A-2, will be used for this test . This

chamber has ambient temperature walls and a temperature-controlled baseplate. The SXM

is mounted to the baseplate via an interface plate.

Figure A-2: SSL thermal vacuum chamber

A .4.5 Fixt ure Requirement s

An interface plate is required to mount the SXM to the chamber baseplate.

A .4.6 I nst rument at ion

Chamber Baseplat e

The chamber baseplate is used to emulate the spacecraft gusset . The SXM bracket me-

chanically interfaces with the interface plate, and the interface plate mechanically interfaces

with the chamber baseplate. The chamber is equipped with a temperature controller for

the baseplate, which can be controlled to a desired temperature ± XoC below ambient using

LN2 tubing. Table A.4 shows the gusset temperatures for the SXM per the Environmental

200

Temperature controlled 

baseplate

Ambient 

walls
Feed-

through 

ports

SSL chamber used for both parameter inference and model validation experiments
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x, θ, d1

x, θ, d2

x, θ, d3

ηSXM

U(d1)

U(d2)

U(d3)

Utility 

Function

z1

z2

z3

+ εm

The Kullback-Leibler (KL) 

divergence utility function:

inserted into Lindley’s expected

experimental utility form [21]:

Parameter Inference Experiment



Background – Bayesian Probability

• Interpretation of probability: instead of quantifying “frequency” or 

“propensity,” a Bayesian probability is a quantity defining a state of 

knowledge

• Bayesian inference

– Given new information, the probability is updated via Bayes’ Theorem

• Broadly applicable to many engineering disciplines

– “Natural” fit to many engineering problems

– “Common sense” interpretation of statistical conclusions 

Bayes’ Theorem

Frequentists Bayesians

Probabilities represent long term 

frequencies of repeatable random

experiments

Probabilities describe the 

incomplete knowledge of a fixed 

parameter or quantity

Data are repeatable, random 

sample

Data observed from realized 

sample

Unknown parameters are constant

Parameters are fixed

Parameters are unknown and 

described probabilistically

Data are fixed

Comparison of Probability Interpretations*

*Casella, George. “Bayesians and Frequentists.” ACCP 37th Annual Meeting, 

Philadelphia, PA. Department of Statistics, University of Florida. 



Motivation – Evidence* (Welch 2006)

• Revisited military standards 

for uncertainty margin

• Examined variety of 

programs, e.g. military, 

NASA, and ESA programs 

Red = hot cases, Blue = cold cases

(a) NASA TIMED

– Very biased thermal model

– Intermediate environments 

significantly more benign 

than worst-case hot scenario

(b) DOD Program D

– Very little model bias, i.e. 

mean near zero

– Large variance about 

hot/cold case mean

*All data, tables, and figures from Welch [11]



Motivation – Evidence* (Karpati et al. 2012)

Flight temperatures vs. model predictions 

for seven recent GSFC missions**

*All data from Karpati, et al. [5]

**Daily/orbit max temperatures polled for 209 sensors for 

entire life of missions.

 

Resource Management and Contingencies in Aerospace Concurrent Engineering 

 

5 

 
 

Figure III-1. Flight temperature data compared against 

predicted temperatures, grouped by component type. All 

components run below their worst-case hot predictions throughout the 

mission, with the exception of a single solar array sensor on one 

mission.  

 

exceptions: one solar array sensor on a 

single mission ran warmer than 

predicted (due to what was later 

determined to be bad thermal modeling 

practices on an uncorrelated model),  

and actuators in general tended to run 

up to  2°C above their stacked worst-

case predictions 1% of the time. The 

flight data was 2°C less than the 

bounding hot case predictions 95% of 

the time, but the average flight data 

point was 16°C lower. Based on these 

results, it can be concluded that the 

stacked worst-case assumptions 

discussed as implicit thermal margin do 

a good job bounding three standard 

deviations of all possible orbital 

thermal environments, but that this may 

be excess margin for lower-cost more 

risky missions.  

 

IV. Impacts Of Thermal Margin 

Policies 

 

While many missions flown by 

GSFC have been quite successful, the 

potential costs associated with 

designing highly robust spacecraft and 

instruments that far outlast their design 

life may have come at the expense of 

other potential missions.  More expensive and highly robust missions consume resources (both money and staffing) 

that could be alternately used to develop other missions. Ultimately, a choice is presented: more missions with 

higher risk or fewer missions with lower risk, i. e. how to best maximize the science return on total dollars invested. 

The above analyses of the margins held as standard practice by the GSFC Thermal Engineering Branch (both 

explicit margin required by the organization and implicit margin held as conservatism in the design parameters), 

suggest that lesser margins could be maintained without adding significant risk.  Given that performance limits are 

generally based on long term operation within the specified limits, maintaining all components within limits for 

100% of the mission with 5°C (or greater) margin may be excessive and unnecessary. In fact the typical 

qualification of the design to temperatures 10°C outside of the expected flight temperature extremes itself 

demonstrates that short duration excursions (i.e. on the order of thermal vacuum testing durations) do not 

significantly impact the overall performance of the hardware.   

Determining the impacts of reduced design margins on a mission’s overall cost and schedule is overarching and 

complex, but  the impacts are not inconsequential. The potential of savings in resources may be truly far reaching, as 

the overly conservative design culture is not limited to thermal engineering, but  in fact it is prevalent in almost all 

disciplines.  Significant cost savings could be realized with higher, but manageable, mission risk, by having every 

subsystem perform overarching analyses to characterize their explicit and implicit margins, and determine the 

correct margins to be applied for a given risk posture and mission success scenario, rather than – as is the case now - 

apply every time pre-ordered inflexible and overly conservative margins. 
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Avg. temperatures 

16 °C lower than 

predictions

Poor thermal modeling 

practices and use of 

uncorrelated model

• Nearly all worst hot case predicted 

temperatures greater than those 

observed

– Results agree with Welch [11] and 

Peabody, et al. [12]

– Evidence that stacked worst case 

scenarios have low 

likelihood/frequency

• Estimated that the 5 oC NASA 

uncertainty margin [17] will result 

in radiator mass growth between 

0.3-0.7 kg per 100 W heat load

– Radiator growth leads to power 

draw increase of 4-6 W per 100 W 

heat load for survival heaters 



State of the Art

Uncertainty Propagation Process [13]

• Goal setting

• Model selection and documentation

- Surrogate modeling

• Uncertainty classification

• Uncertainty characterization

• Uncertainty Analysis (UA)

• Sensitivity Analysis (SA)

Uncertainty Propagation (UP)

Thermal Convention

Stacked worse case 

scenarios [1]

• Heat loads 

• Coating degradations

• Power dissipations

• Beta angles

• Critical conductances

• MLI e*

Most programs follow the philosophy in NASA 

GOLD Rules [17]:

UA for three different 

designs*

Global SA concept**

Rule: Use model to show adequate margin between component 

temperature limits and stacked worst case temperature predictions.

Rationale: Positive margins account for uncertainties in power 

dissipations, environments, and thermal system parameters.

*S.A. Uebelhart, D. Miller, and C. Blaurock. Uncertainty Characterization in 

Integrated Modeling. AIAA Structures, Structural Dynamics and Materials 

Conference, 46:2005– 2142, April 2005. 

**A. Saltelli, S. Tarantola, and K.P.-S. Chan. A Quantitative Model-Independent 

Method for Global Sensitivity Analysis of Model Output. Technometrics, 41(1):39–

56, 1999. American Statistical Association and the American Society for Quality. 



State of the Art
Optimal Bayesian Experimental Design (OBED)

Culminate to Huan and Marzouk [21]:

• Update prior parameter distributions to reduce uncertainty

• Framework allows for different experimental goals, e.g. 

parameter inference

• Measure utility based on experimental result
- Utility function based on predictive variance or parameter of 

interest, e.g. Kullback-Leibler divergence

Design of Experiments (DOE)

Thermal Convention
• Models validated through thermal balance testing

• Classical DOE approach (same testing philosophy):

- NASA – GEVS [17]

- Military – MIL-STD-1540 [15] and MIL-HDBK-340 [16]

- Other, e.g. universities

What cases and how a system should 

be tested to achieve model validation

• Test levels

• Environmental conditions 

• Duration

Bayesian statistics offer inference from noisy, indirect, and incomplete data.

Classical DOE
• Ronald Fisher [18,19]

- Est. null hypothesis

• Principles of DOE

- Randomization, blocking, 

replication, orthogonality

• No unified strategy and 

predefined experiments for 

general system

Min Requirement: Two test conditions shall be imposed: one each at mission hot 

and cold case. NASA engineers shall select one additional case, per GEVS.

Primary Objective: Validate the design/model, which will be used to make 

predictions for the entire range of modes/mission environments.



Model Calibration

State of the Art

Parameter optimizations

• Cullimore [#]

• Masterson [#]

Bayesian Calibration

Seminal Paper – Kennedy and O’Hagan [22]

• General Bayesian calibration framework

• Non-linear, black box models

• Captures all parametric and non-parametric 

uncertainties

• Model inadequacy quantified after experiment

K-O Approach Enhancements

• Brynjarsdottir and O’Hagan [#]

- Model the model inadequacy

• Higdon et al. [#]

- High dimensional output

• Bayarri et al. [#]

- Model validation framework

Thermal Convention

Correlation process outlined by Gilmore [1] followed 

for most space-based thermal systems:

1. Configure model based on environment and power 

modes tested

2. For a single test phase, adjust model to match data. 

Common adjustments to the model include: 

- Physical model omissions, i.e. model 

inadequacy

- View factor geometries

- Conductances

- Power dissipations

3. Correlate all temperature differences between model 

and test data to less than some threshold value, e.g. 

±3oC per MIL-HDBK-340 [16] 

4. Repeat 2-3 for the remaining test phases, ensuring 

that changes made in each remaining phase do not undo 

the correlation from a previous phase 

Ad hoc search for best fitting model 

parameters: relies heavily on engineering 

experience and intuition.

Focuses only on 

parameters



Model Formulation

Figure 5-1: Lumped parameter concept [1]

The governing equat ion for the SXM lumped parameter model with n nodes is a dif-

ferent ial equat ion of the form of Equat ion (5.2):

dT

dt
= f (T , t) (5.2)

where T = [T1 T2 ... Tn ]T is the vector of node temperatures. To obtain f(T ,t), several

assumpt ions are made to develop the SXM model:

• Heterogeneous material globally, but the material assigned to each node is homo-

geneous

• All SXM material is isotropic

• All material assigned to a node is the same temperature as the node, i.e. homo-

geneous material regions are isothermal

Using these assumpt ions, mult iplying by the volume of each node, and writ ing for each

node, the heat transfer equat ion in Equat ion 5.3 becomes:

C
dT

dt
= GT + Q(T , t) (5.3)

where C is the heat capacity matrix, G is the nodal matrix, and Q= [Q1 Q2 ... Qn ]T

captures the total e↵ect of radiat ion and internal power dissipat ions. C and G are

given by:
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Lumped Parameter Concept [1]

Model Formulation

Select Δt such that solver is stable 

and has acceptable error

where the three QoIs are identified in the output 

Governing differential equation of form: where the nodal temperatures are 

Simplifying Assumptions:

• Heterogeneous material 

globally, but the material 

assigned to each node is 

homogenous

• All SXM material is isotropic

• All material within a nodal 

region is isothermal

(a) SXM nodes 1,2, and 5
(b) SXM nodes 3 and 4 (collimator and SXM

housing removed)

Figure 5-6: SXM node assignments for the lumped parameter model

Figure 5-7: Connect ivity matrix for SXM model. Blue boxes with C indicate conduct ive

heat transfer, and red boxes with R indicate heat transfer through radiat ion. Blank boxes

indicate no thermal connect ion, e.g. Gi ,j = 0 in conduct ion. Above the matrix diagonal,

heat t ranfers from the upper left to the lower right nodes. Below the matrix diagonal, heat

transfers from the lower right to upper left nodes.

In Figure 5-7, a decision was made to not include the e↵ects of solar radiat ion on

the other SXM components. Although the MLI great ly reduces the total absorbed

heat, a sensit ivity analysis was performed to just ify the exclusion of solar radiat ion
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Node 5: 

Collimator

Node 1: Bracket
Node 3: 

SEB

Node 4: SDD Housing

Node 2: SXM Housing

SXM Lumped Parameter Nodes



Prior SXM TEC Model

• Performance estimates provided by 

Amptek, Inc. used to predict SDD 

temperature

• Parameters of polynomial curves are 

fixed values

• In flight, VTEC will be controlled by 

flight software

• As the hot side temperature, Th, 

increases, more power is required

TEC 

Model

TSDD

iTEC

Th

VTEC

Thermoelectric Cooler (TEC)

Proportional Control to Setpoint, Ts

Thermal analysis uses TEC model 

and controller to focus on the ability 

of the TEC to achieve Ts = -30oC.

Figure 5-4: SDD temperature versus voltage for SXM TEC for various Tp values [12]

Figure 5-5: SDD temperature versus current for SXM TEC for various Tp values [12]

The TEC is controlled by REXIS software to a temperature set point , Ts. Al-

though current ly the control software is not writ ten, the capability of the TEC to
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Figure 5-5: SDD temperature versus current for SXM TEC for various Tp values [12]

The TEC is controlled by REXIS software to a temperature set point , Ts. Al-

though current ly the control software is not writ ten, the capability of the TEC to
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SXM Model Nominal Parameters

• 38 total parameters

– 18 are uncertain or naturally 

exhibit variation

• What is meant by nominal?

– Default design value

– Current best estimate

– Median parameter value

Effect of TEC 

proportional controller

Structure relatively 

isothermal

Low thermal inertia, 

thus small time constant

Nominally, all three steady-state temperature requirements are satisfied

Results for Nominal Case

Requirements



SXM Model Uncertain Parameters

SXM model parameters and their init ial probability dist ribut ion parameters. In all cases,

it is possible to bound the maximum and minimum expected values for the parameter, but

no shape informat ion for the probability dist ribut ions is known. Consequent ly, all 18 init ial

parameter distribut ions are uniform distribut ions. To place a value on the minimum and

maximum parameter values, lookup tables [1, 17, 26, 128] were used for the node specific

heats, conduct ion parameters, and radiat ion parameters. The lookup tables provide est i-

mates based on a historical data for a measured value. The minimum and maximum values

are consistent with the worst case hot and cold case assumptions used in convent ional model

validat ion thermal analysis. Finally, the power dissipat ions are based on power analyses of

the pre-amp board and SDD dissipat ions.

Table 5.4: SXM model nominal parameter values and init ial parameter dist ibut ion values

To providean exampleof how theminimum and maximum parameter valueswerederived

for the uniform dist ribut ions, Table 5.5 shows the recommended conductance values for a
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Fourier Amplitude Sensitivity Testing (FAST)

• Variance-based global sensitivity analysis method

• Can be more efficient to evaluate “main” or “total” 

effect sensitivity indices over other methods

Xi = Gi sin(wis)
Explore N-dimensional space of model 

parameters via search curve defined by 

parametric equations

s ~ scalar from [-inf,+inf]

Gi ~ transfer function

ωi ~ frequencies

In classic FAST, main effects sensitivities are 

approximated via Fourier coefficients



Sensor Importance Study

• Objective: identify through 

analysis which temperature 

sensors are most important 

w.r.t. experimental utility

• Procedure can be used to 

answer:

– Where to measure?

– How accurately to measure?

• Value in knowing sensor 

importance:

– Sensor could fail during test

– Addition of redundant sensors 

for critical locations

– Testbed may have sensor 

quantity restrictions

– Planned sensor may not be 

possible to install on system

Occurred on SXM – not possible to 

place RTD on SXM electronics board. 

Vector of observations, z, is now 5x1.

SDD and SDD housing measurements 

are most important, on average, for 

realizing high experimental utility

Pearson’s Correlation Coefficient

Matrix of Sensor Permutations (64x6)

Will indicate whether the presence of a sensor 

is, on average, correlated to high utility
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SXM thermal time constant is approximately 

10 min due to small thermal capacitance.

Very small ∆T between 

bracket and interface

System time constant is small, 

allowing for many different tests

Chamber baseplate: 25 oC

TEC Voltage: 4.0 V

Experimental Results: Sample for T9



Prior Predictive Check (PPC): Gh Only

• Propagate prior uncertainty 

through SXM thermal 

model

• All parameters have fixed 

values except for Gh

• PPC for only test phase 

T36 (4.0 V, -30 oC)

Current Parametric Model Uncertainty

Parameter Units Min Value Max Value

Gh W/m2/C 100 4,000

Location of discrepancy and previous 

GSA suggests to repeat PPC including 

the uncertainty in conductance between 

SXM housing and bracket, Gs,b 

Bracket

Collimator

SXM Housing SDD Housing

SDD

Evidence of significant 

model inadequacy

Small discrepancy, ≈0.3 oC
Data plausible under prior 

predictive distribution

Data plausible under prior 

predictive distribution

Evidence of significant 

model inadequacy



PPC: Gh and Gs,b Only

• Propagate prior uncertainty 

through SXM thermal model

• All parameters have fixed 

values except for Gh and Gs,b

• PPC for only test phase T36 

(4.0 V, -30 oC)

Current Parametric Model Uncertainty

Parameter Units Min Value Max Value

Gh W/m2/C 100 4,000

Gs,b W/C 0.11 1.32

Improvement but lack of 

surface area near screw holes 

suggests to repeat PPC but 

reduce lower bound of Gs,b

Collimator SDD

Small discrepancy 

persists, ≈0.3 oC

Data still plausible 

under prior predictive 

distribution

Evidence of significant model 

inadequacy; though 

magnitude has decreased

Evidence of significant model 

inadequacy; though 

magnitude has decreased

Data still plausible 

under prior predictive 

distribution

Bracket SXM Housing SDD Housing



PPC: Gh and Gs,b Only, Relaxed Gs,b Lower Bound

• Propagate prior uncertainty 

through SXM thermal model

• All parameters have fixed 

values except for Gh and Gs,b

• PPC for only test phase T36 

(4.0 V, -30 oC)

Current Parametric Model Uncertainty

Parameter Units Min Value Max Value

Gh W/m2/C 100 4,000

Gs,b W/C 0 1.32

Persisting small discrepancy in 

bracket suggests to repeat PPC 

including uncertainty in conductance 

between bracket and interface, Gb

Collimator SDD

Small discrepancy 

persists, ≈0.3 oC

Data still plausible 

under prior predictive 

distribution

Data still plausible 

under prior predictive 

distribution

Data plausible under prior 

predictive distribution

Data plausible under prior 

predictive distribution

Bracket SXM Housing SDD Housing



PPC: Gh, Gs,b and Gb Only, Relaxed Gs,b Lower Bound

• Propagate prior uncertainty 

through SXM thermal model

• All parameters have fixed 

values except for Gh, Gs,b

and Gb

• PPC for only test phase T36 

(4.0 V, -30 oC)

Current Parametric Model Uncertainty

Parameter Units Min Value Max Value

Gh W/m2/C 100 4,000

Gs,b W/C 0 1.32

Gb W/m2/C 100 4,000

Current parametric uncertainty can 

explain all data for T36. Now, update 

parameter distributions and calibrate 

to all test phases.

Collimator SDD

Data still plausible 

under prior predictive 

distribution

Data still plausible 

under prior predictive 

distribution

Data plausible under prior 

predictive distribution

Data still plausible 

under prior predictive 

distribution

Data still plausible 

under prior predictive 

distribution

Bracket SXM Housing SDD Housing



Quantify Calibrated Model Discrepancy for SDD

• No obvious functional relationship between 

SDD temperature and VTEC, TO-REx

• Updated, empirical TEC thermal model 

under-predicts/over-predicts SDD 

temperature 

– If more accuracy were required, additional 

refinements to TEC model would increase 

predictive accuracy

• Histogram of all discrepancy samples for all 

43 test cases reveals that discrepancy can be 

conservatively captured via Gaussian 

distribution

Mean of SDD Discrepancy 

Samples for all 43 Test Phases

Histogram of SDD Discrepancy 

Samples for all 43 Test Phases

SDD discrepancy function will be 

stationary Gaussian distribution 

conservative approach because maximum 

possible discrepancy variance is 

considered for all possible VTEC, TO-REx



GP Model – Sample Section

Variable voltage 

and TO-REx 

constant at 25 oC

GP model section shows variance reduction and trends in 

discrepancy samples well-matched with discrepancy model

SDD Housing – GP Model Section



Comparison of BMV to a Conventional Approach

Validation 

Step

Analogous BMV 

Step
BMV A Conventional Approach

Analysis

2: UP and 

Parameter 

Prioritization

• All system and environmental parameters 

probabilistically characterized and propagated through 

model for many thousands of bounding and 

intermediate thermal cases; all requirements satisfied 

for TO-REx up to 50 oC

• Global sensitivity analysis uses information within 

model to rigorously, systematically identify critical 

system sensitivities; SXM conductance Gh is critical 

sensitivity

• Likely only two analysis cases, 

corresponding to worst-case hot 

and cold operational scenarios

• Identification of critical system 

sensitivity up to individual 

engineer; often manual local 

sensitivity analysis; heavy 

reliance on experience/intuition

Test

4: Design and 

Implementation of 

Experiments

• Parameter inference experiment to maximize information 

gain in Gh at VTEC = 4.0 V and TO-REx = -30 oC

• Full factorial model validation experiment with focus on 

bounding important parameters of domain of intended 

application of SXM

• System-level thermal balance test 

at worst hot case, cold case, and 

possibly a few intermediate cases

Model 

Update

5: Experimental

Model Calibration 

and Flight Model 

Updates

• SXM thermal model parameters were updated (not 

replaced) via systematic, Bayesian calibration approach

• Remaining model inadequacy was quantified via 

Gaussian Process Models to predict inadequacy for any 

SXM power mode or spacecraft interface temperature

• Manual correlation or parameter 

optimization model update 

procedure

• Differences between model 

predictions and experimental data 

are less than a threshold value 

(e.g., ±3 oC)

For SXM case study, BMV led to additional information being available to the engineer at each major 

step of the validation process. BMV focused validation efforts to critical areas of SXM thermal system 

and provided a more rigorous quantification of model uncertainties before and after testing. 



Importance of TO-REx as System Design Parameter
• Cooling the SXM interface is driving thermal system accommodation for 

REXIS SXM
– SXM is nominally facing the sun

– Need to cool the SXM interface to 50 oC with the GEVS [17] standard thermal 
design margin of 5 oC

• Due to the 50 oC spacecraft interface upper limit, design changes to 
OSIRIS-REx included:

– Heat spreader and RTV added to interface to decrease thermal resistance across 
interface 

– Changes in surface coatings near the SXM to help cool the mounting structure 

– Redesign of MLI blankets near the interface to increase heat rejection from structure 
to cooler parts of spacecraft 

• Power cycling of REXIS could be necessary if temperatures are slightly 
warmer than expected

– Operational mission plan has changed since the 50 oC upper limit was set

– Power cycling introduces risk to spectrometer detector array that would require 
major rework to spectrometer electronics so that detectors could remain on if SXM 
were power cycled

The spacecraft-SXM interface temperature, TO-REx, is an important system 

design parameter. If the upper limit had been higher, some or all of the design 

changes and potential operational constraints would not have been necessary.



MCMC Results

Good mixing, but MCMC 

hitting “wall” at 4,000 W/m2/C

Increase upper bound of 

Gh distribution and update 

MCMC results

Correlated posterior distributions: 

Gs,b and Gb affected by Gh “wall”

Glasgow and Kittredge [30]: Cho-Therm 

1671 (applied to Gh interface) tested near its 

vendor-specified value of 6,700 W/m2/C


